新加坡国立大学统计与运筹学专业课程内容

2024-10-25 10:07:22 30

  运筹学用一句话来说:在约束下把事情做得最好。

  用数学术语来说,上面的问题可以写成:

  最大化F(X1,X2,…,Xn)

  使得它满足约束C1,C2,…,Cm。

  OR中的三个主要问题类

  1、最佳化

  数学规划:就像上面的优步例子,我们选择决策变量 (司机派遣),该目标函数(利润最大化) 以及一组(物理的、技术的、经济的、环境的、法律的、社会的等等。)限制。然后,我们用数学方法解决它们。

  数值优化:N数值优化可以是基于梯度的,也可以是非梯度的。梯度下降是机器学习中最流行的优化算法之一基于梯度的(从名字上看很明显)优化。有很多非梯度算法(无导数优化)以及贝叶斯优化, 布谷鸟搜索,遗传算法等等。当目标函数不平滑或目标函数的封闭形式不可用时,使用非梯度算法。

  2、概率建模

  概率模型输出概率分布,而确定性模型输出事件的单一可能结果。

  众所周知的概率模型之一是交叉熵,我们经常使用的成本函数预测概率分布 越过目标。贝叶斯推理和最大后验概率也是概率模型的重要应用。

  3、模拟

  模拟用于近似概率分布导出一个不方便。它使用重复随机抽样并获得数值结果。这个想法是利用随机性来解决本质上可能是确定性的问题。模拟有多种用途;例如,从不同的概率分布、数值积分、强化学习、期权定价等生成图纸。

  统计与运筹学课程的主要内容:

  一、概率论

  将学习描述性统计、如何构建统计模型、推断性统计,如寻找最大似然估计量和构建置信区间。同学们将学习联合分发,条件独立,独立随机变量的和,力矩生成函数,大数定律,中心极限定理,无限可分定律等。

  二、确定性模型

  使用确定性模型,无论重新运行模型多少次,对于特定的输入,都会得到完全相同的结果。换句话说,确定性模型中没有随机性,这在现实世界中不太可能。在这门课中,你将学习问题公式、线性规划、单纯形算法、动态规划、对偶理论、灵敏度理论等。

  三、随机性模型

  你将学习运筹学中的随机建模技术,如马尔可夫链、出生和死亡过程,泊松过程,赌徒破产问题、布朗运动等。

  以上这些都是统计与运筹学相关的一些知识,新加坡留学生辅导老师还会根据同学在国立大学的实际学习情况,定制专属的适合同学与大学考核机制的课程学习方向的方案,帮助同学们度过课程难点的学习。

最新文章
香港科技大学环境健康与安全面试 506
香港科技大学会计学面试 419
留学比例持续下降!清华北大公布2021年就业质量报告! 424
超拼!00后女孩为留学怒打六份工,评论区却为值不值得吵疯了 636
重磅:英国start-up签证疫情政策将被取消!申请者怎么办? 385
国外大学的“一年制硕士”争议背后是教育认知差异 410
广东省抽检1340篇硕士学位论文:7篇被认定存在问题 660
HKUMALCS 香港大学文化研究面试内容+面经 333
留学生遭遇“签证复查”浦发银行北京分行成功拦截一起新型留学诈骗! 340
澳洲留学生注意,联邦正式修改疫情补贴要求!能领的金额又变多了 297
最热文章
威斯康星大学麦迪逊分校Lab report写作要点提示 1229
伊利诺伊理工大学论文降重方法 772
加州大学圣芭芭拉分校作业可以申请晚交吗? 745
美本有机化学课程重点梳理!考前必看! 735
UCSD撤销offer后该如何写argue letter?有哪些注意事项? 708
加州公校入学率持续下滑,面临关门危机 683
美国留学生考试该如何备考?Final week复习指南! 662
广东省抽检1340篇硕士学位论文:7篇被认定存在问题 660
超拼!00后女孩为留学怒打六份工,评论区却为值不值得吵疯了 636
怀卡托大学论文降重指南! 636