多伦多大学大一微积分作业题汇总

2024-10-25 10:07:22 14

  多伦多大学的微积分课程学习众多数学主题,不少同学总是觉得课程很难,考试也不知道怎么备考。下面我们提供一些这门课程经常会出现的一些作业题目,同学们在平时学习中或者考前复习时都可以用这些题目来做提升训练。

  一、课程内容

  unit1:逻辑、集合、符号、定义和证明

  unit2:极限和连续性

  unit3:导数

  unit4:超越函数

  unit5:中值定理及其应用

  unit6:极限和导数的应用

  unit7:积分的定义

  unit8:微积分的基本定理

  unit9:积分方法

  unit10:积分的应用

  unit11:序列

  unit12:反常积分

  unit13:系列

  unit14:幂级数和泰勒级数

  二、作业题分享

  1.Negate each of the following statements without using any negative words (‘no’,‘not’, ‘none’, etc):

  (a) “Every page in this book contains at least one word whose first and last letters both come alphabetically before M.”

  (b) “I have a friend all of whose former boyfriends had at least two siblings with exactly three different vowels in their name.”

  (c) “If a student in this class likes the musical Cats then they are not my friend.”

  2. Consider the following definitions about real numbers x:

  • x is courageous when ∀a > 0, x

  • x is hard-working when ∀a ≥ 0, x

  • x is intelligent when ∀a > 0, x ≤ a

  • x is ambitious when ∀a ≥ 0, x ≤ a

  3.Given a real number x, we defined the floor of x, denoted by b xc , as the largest integer smaller than or equal to x. For example, [π] = 3, [ 7 ] = 7, and [−0.5] = −1.

  (a) Sketch the graph of this function. At which points is the function f(x) = [x] continuous? Which discontinuities are removable and which ones are nonremovable?

  (b) Consider the function h(x) = [sin x] . Show that h has exactly one removable and one non-removable discontinuity inside the interval (0, 2π).

  4.The functions G and H have both domain R. They are continuous everywhere. They satisfy G(0) = 0 and H(0) = 0. Moreover, G0 = g and H0 = h, where g and h are the functions in Question 2. Sketch the graphs of G and H.

  5.You know what your final answers should be. Just make sure that at each point you are only using things that have already been proven.

  6.Now we have a bar which lies on the x-axis, from the position x = 1 to the position x = 7 (all values of x are measured in meters). The bar is made of different materials. Between x = 1 and x = 2, the density of the bar is 2kg/m; between x = 2 and x = 5, the density is 3kg/m; between x = 5 and x = 5.5, the density is 10kg/m, and between x = 5.5 and x = 7, the density is 1kg/m. What is the total mass of the bar?

  三、微积分课程作业基本解题思路

  审题→绘图→思考方法并选择→套用定理or公式→边界条件→检查计算过程

  1.审题时需要你明确这道题目的具体要求,找到关键信息,尤其是一些隐含条件。对于有些题目,需要绘图才能更清晰地知道怎么解题。一道题目也可能不止一种解题方式,在解题时,你往往需要决定使用哪种方法,另外可以根据题目特点选择恰当的微积分方法,比如求导、积分、极限等等。

  解题过程中,一些基本定理和公式是关键,导数、积分、微分中值定理分别是什么,怎么使用,这些在你练题之前都可以先复习一遍。最后,做完题目,一定不能忘记检查,不要犯一些低级错误。

  以上是多伦多大学的大一微积分课作业相关问题分享,希望可以帮助大家更了解题目出题方式。在学习过程中有任何问题,同学们都可以直接向海师帮的专业老师提问!

最新文章
香港科技大学环境健康与安全面试 506
香港科技大学会计学面试 419
留学比例持续下降!清华北大公布2021年就业质量报告! 424
超拼!00后女孩为留学怒打六份工,评论区却为值不值得吵疯了 636
重磅:英国start-up签证疫情政策将被取消!申请者怎么办? 385
国外大学的“一年制硕士”争议背后是教育认知差异 410
广东省抽检1340篇硕士学位论文:7篇被认定存在问题 660
HKUMALCS 香港大学文化研究面试内容+面经 333
留学生遭遇“签证复查”浦发银行北京分行成功拦截一起新型留学诈骗! 341
澳洲留学生注意,联邦正式修改疫情补贴要求!能领的金额又变多了 297
最热文章
威斯康星大学麦迪逊分校Lab report写作要点提示 1231
伊利诺伊理工大学论文降重方法 774
加州大学圣芭芭拉分校作业可以申请晚交吗? 746
美本有机化学课程重点梳理!考前必看! 736
UCSD撤销offer后该如何写argue letter?有哪些注意事项? 709
加州公校入学率持续下滑,面临关门危机 684
美国留学生考试该如何备考?Final week复习指南! 663
广东省抽检1340篇硕士学位论文:7篇被认定存在问题 660
超拼!00后女孩为留学怒打六份工,评论区却为值不值得吵疯了 636
怀卡托大学论文降重指南! 636